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Abstract. The Nasdaq Composite fell another ≈ 10% on Friday the 14’th of April 2000 signaling the end
of a remarkable speculative high-tech bubble starting in spring 1997. The closing of the Nasdaq Composite
at 3321 corresponds to a total loss of over 35% since its all-time high of 5133 on the 10’th of March 2000.
Similarities to the speculative bubble preceding the infamous crash of October 1929 are quite striking: the
belief in what was coined a “New Economy” both in 1929 and presently made share-prices of companies
with three digits price-earning ratios soar. Furthermore, we show that the largest draw downs of the Nasdaq
are outliers with a confidence level better than 99% and that these two speculative bubbles, as well as
others, both nicely fit into the quantitative framework proposed by the authors in a series of recent papers.

PACS. 01.75.+m Science and society – 02.50.-r Probability theory, stochastic processes, and statistics –
89.90.+n Other topics of general interest to physicists

1 Introduction

A series of recent papers [1–6] have presented increasing
evidence that market crashes as well as large corrections
are often preceded by speculative bubbles with two main
characteristics: a power law acceleration of the market
price decorated with log-periodic oscillations. Here, “log-
periodic” refers to the fact that the oscillations are peri-
odic in the logarithm of the time-to-crash. Specifically, it
has been demonstrated that the equation

F (t) = A+B (tc − t)z + C (tc − t)z cos (ω ln (tc − t)− φ)
(1)

remarkably well quantifies the time-evolution of the bub-
ble in terms of the price ending with a crash or large cor-
rection at a time close to tc. This equation corresponds to
a first order Fourier expansion of the general power law
solution to a “renormalization equation”

dF (t)
d ln (tc − t)

= z + iω (2)
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around the “critical point” tc. Quite remarkable, for all
the bubbles in the most liquid markets, e.g., USA, Hong-
Kong and the Foreign Exchange Market, the log-frequency
ω/2π have consistently been close to 1. Within the frame-
work of power laws with complex exponents, or equiva-
lently discrete scale invariance [7], this corresponds to a
preferred scaling ratio λ ≈ e ≈ 2.7: the local period of
the log-periodic oscillations decreases according to a geo-
metrical series with the ratio λ. For a range of emergent
markets, larger fluctuations were seen in the value of λ,
but the statistics resulting from over twenty bubbles were
quite consistent with that of the larger markets [6]. In
contrast, the “universality” of the value of the real part
of the exponent quantifying the acceleration in the price
has not been established. From a theoretical view point,
this is not surprising: a rational expectation model of bub-
bles and crashes show that depending on whether the size
of the crash is proportional to the price itself or that of
the increase due to the bubble, either the logarithm of
the price or the price itself is the correct quantity char-
acterising the bubble [3]. Another more technical reason
for the larger fluctuations in the exponent z comes from
the well-known sensitivity in the determination of critical
exponents due to finite-size-effects as well as errors in the
determination of the value of the critical point tc.



320 The European Physical Journal B

The question is whether we, in an objective and non-
arbitrary manner, can define a crash and hence when we
should expect equation (1) to be a good description of the
preceding bubble? This is the subject of the next section.

2 Crashes are outliers

It is well-known that the distributions of stock market re-
turns exhibit “fat tails”. For example, a 5% daily loss in
the Dow Jones Industrial Average occurs approximately
once every two years while the Gaussian framework would
predict one such loss in about a thousand year. Further-
more, the unconditional volatility on various emergent
markets is much higher than on developed equity mar-
kets [8]. These empirical observations has led to the devel-
opment of more sophisticated models than the Gaussian,
for instance involving power law tails [9–13] or stretched
exponentials [14] as well as models allowing for non-
stationary of volatility such as ARCH and GARCH mod-
els [15], which better reproduces the statistics of the mar-
ket fluctuations. Crashes on the other side are the most
extreme events and there are two possibilities to describe
them:

1. The distribution of returns is stationary and the ex-
treme events can be extrapolated as lying in its far
tail. Within this point of view, recent works in finance
and insurance have recently investigated the relevance
of the body of theory known as Extreme Value Theory
to extreme events and crashes [16–18].

2. Crashes cannot be accounted for by an extrapolation
of the distribution of smaller events to the regime of
extremes and belong intrinsically to another regime,
another distribution, and are thus outliers.

In order to see which one of these two descriptions is
the most accurate, a statistical analysis of market fluctu-
ations [19] was performed. Instead of looking at the usual
“one-point statistics” in terms of the distribution of re-
turns, higher order correlations were included by instead
considering so-called draw downs. A draw down is defined
as a persistent decrease in the index over consecutive days.
Specifically, the daily closing of the Dow Jones was con-
sidered disregarding occasional single upwards movements
of less than 1%. It was established that the distribution
of draw downs of the Dow Jones Average daily closing
from 1900 to 1993 is well approximated by an exponen-
tial distribution with a decay constant of about 2%. (As
we will soon see the decay is actually slower than that of
an exponential.) This exponential distribution holds only
for draw downs smaller than about 15%. In other words,
this means that all draw downs of amplitudes of up to ap-
proximately 15% are well approximated by the same ex-
ponential distribution with characteristic scale 2%. This
characteristic decay constant means that the probability
of observing a draw down larger than 2% is about 37%.
Following hypothesis 1 and extrapolating this description
to, e.g., the three largest crashes on the USA market in
this century (1914, 1929 and 1987) yields a recurrence time

of about 50 centuries for each single crash. In reality, the
three crashes occurred in less than one century.

As an additional null-hypothesis, 10 000 synthetic data
sets, each covering a time-span close to a century hence
adding up to about 106 years, have been generated us-
ing a GARCH(1,1) model estimated from the true index
with a t-student distribution with four degrees of free-
dom [15]. This model includes both non-stationarity of
volatilities and fat tail nature of the price returns. In con-
clusion, our analysis [5] showed that in approximately one
million years of heavy tail “Garch-trading”, with a reset
every century, never did three crashes similar to the three
largest observed in the true Dow Jones Index occur in a
single “Garch-century”. Of course, these simulations do
not prove that our model is the correct one, only that one
of the standard models of the “industry” (which makes a
reasonable null hypothesis) is utterly unable to account for
the stylized facts associated with large financial crashes.
What it suggests is that different mechanisms are respon-
sible for large crashes and that hypothesis 2 is the correct
description of crashes.

A similar picture has been found for the Nasdaq Com-
posite. In Figure 1, we see the rank ordering plot of “pure”
draw downs, i.e., no threshold (see [19] for a brief discus-
sion of the effect of thresholds), since the establishment of
the index in 1971 until 18 April 2000. Recall that the rank
ordering plot, which is the same as the (complementary)
cumulative distribution with axis interchanged, puts em-
phasis on the largest events. Again, we see that the four
largest events are not situated on a continuation of the
distribution of smaller events: the jump between rank 4
and 5 in magnitude is > 33% whereas the corresponding
jump between rank 5 and 6 is < 1% and this remains true
for higher ranks. This means that, for draw downs less
than 12.5%, we have a more or less “smooth” curve and
then a > 33% gap(!) to rank 3 and 4. The four events are
according to rank the crash of April 2000 analysed here,
the crash of October 1987, a > 17% “after-shock” related
to the crash of October 1987 and a > 16% drop related to
the “slow crash” of August 1998.

In order to quantify the cumulative distribution of
draw downs N(x), we compare it with a stretched
exponential

N(x) ≈ a exp(−bxc) (3)

as null-hypothesis [14], see Figure 2 and caption. Con-
firming the result from the rank ordering, we see that the
stretched exponential captures well the distribution ex-
cept for the four largest events. Furthermore, it is clear
from Figure 2 that the distribution is not that of a power
law which would be qualified as a straight line in this
log-log plot. One could perhaps argue that the tail of the
cumulative distribution tends to become linear in this log-
log representation; however, this observation is based on
an interval smaller than half-a-decade. In addition, in the
case of the Dow Jones data shown in Figure 4, the tail
is even fatter than a power law with an upward convex-
ity in the log-log representation. The principle of parsi-
mony leads us to prefer not to assume any distribution
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Fig. 1. Rank ordering of draw downs in the Nasdaq Composite since its establishment in 1971 until 18 April 2000.
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Fig. 2. Natural logarithm of the cumulative distribution of draw downs N(x) in the Nasdaq Composite since its establishment in
1971 until 18 April 2000. The fit is ln(N) = ln(1479)− 29.0x0.77 assuming that the distribution follows a stretched exponential
N(x) = a exp(−bxc). Here a = 1479 is the total number of draw downs. The exponent c ≈ 0.8 is compatible with values
previously found in other markets [14,27]. Note that, in this representation, a powerlaw distribution would qualify as a straight
line.

in the tail and only conclude about the fact that the few
largest events are clearly taken from a different distribu-
tion. Indeed, if we extrapolate the curve to larger events,
we get that, in the ≈ 30 years of the existence of the Nas-
daq Composite, we should have observed 0.09 draw downs
above 24%, whereas in reality we have observed 2.

To further establish the statistical confidence with
which we can conclude that the four largest events are
outliers, we have reshuffled the daily returns 1 000 times

and hence generated 1 000 synthetic data sets. This proce-
dure means that the synthetic data will have exactly the
same distribution of daily returns. However, higher order
correlations apparently present in the largest draw downs
are destroyed by the reshuffling. This surrogate data anal-
ysis of the distribution of draw downs has the advantage of
being non-parametric, i.e., independent of the quality of
fits with a model such as the stretched exponential or the
power law. We will now compare the distribution of draw
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Fig. 3. Normalised cumulative distribution of draw downs in the Nasdaq Composite since its establishment in 1971 until
18 April 2000. The 99% confidence lines are estimated from the synthetic tests described in Section 2.
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Fig. 4. Natural logarithm of the cumulative distribution of draw downs N(x) in the Dow Jones since 1900 until 2 May 2000.
The fit is ln(N) = ln(6469) − 36.3x0.83 assuming that the distribution follows a stretched exponential N(x) = a exp(−bxc).
Here a = 6469 is the total number of draw downs. The exponent c ≈ 0.8 is in remarkable agreement with the value found in
the Nasdaq Composite, see caption of Figure 2. The outliers to the fit are according to rank the crash of October 1987, the
crash in 1914 related to the outbreak of the First World War, the crash of October 1929, two > 18% crashes in 1932 and 1933
respectively and two > 15% “aftershocks” related to the October 1929 crash. Note that, in this representation, a powerlaw
distribution would qualify as a straight line.
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downs both for the real data and the synthetic data. With
respect to the synthetic data, this can be done in two com-
plementary ways. In Figure 3, we see the distribution of
draw downs in the Nasdaq Composite compared with the
two lines constructed at the 99% confidence level for the
entire ensemble of synthetic draw downs, i.e. by consid-
ering the individual draw downs as independent: for any
given draw down, the upper (resp. lower) confidence line
is such that 5 of the synthetic distributions are above (be-
low) it; as a consequence, 990 synthetic times series out of
the 1 000 are within the two confidence lines for any draw
down value which define the typical interval within which
we expect to find the empirical distribution.

Two features are apparent in Figure 3. First, the dis-
tribution of the true data breaks away from the 99%
confidence intervals at ≈ 15%, showing that the four
largest events are indeed outliers in this sense. In addition,
the empirical distribution of draw downs is systemat-
ically found close to the upper confidence boundary,
with an upward curvature described by the apparent
stretched exponential equation (3), for values less than
15%. In contrast, the median value between the two
confidence lines is approximately linear in this semi-
logarithmic representation, qualifying an exponential dis-
tribution as expected for uncorrelated daily returns (see
Appendix 1 of [5]). The upward curvature of the dis-
tribution of draw downs and its closeness to the upper
confidence line thus signals a subtle dependence between
consecutive returns.

A more sophisticated analysis is to consider each syn-
thetic data set separately and calculate the conditional
probability of observing a given draw down given some
prior observation of draw downs. This gives a more pre-
cise estimation of the statistical significance of the outliers,
because the previously defined confidence lines neglect the
correlations created by the ordering process which is ex-
plicit in the construction of a cumulative distribution.

Out of the 10 000 synthetic data sets, 776 had a sin-
gle draw down larger than 16.5%, 13 had two draw downs
larger than 16.5%, 1 had three draw downs larger than
16.5% and none had 4 (or more) draw downs larger than
16.5% as in the real data. This means that given the dis-
tribution of returns, by chance we have a ≈ 8% prob-
ability of observing a draw downs larger than 16.5%, a
≈ 0.1% probability of observing two draw downs larger
than 16.5% and for all practical purposes zero probability
of observing three or more draw downs larger than 16.5%.
Hence, the probability that the largest four draw downs
observed for the Nasdaq could result from chance is out-
side a 99.99% confidence interval. As a consequence we are
lead to conclude that the largest market events are to be
characterised by the presence of higher order correlations
in contrast to what is observed during “normal” times.

Performing a fit with a stretched exponential on the
cumulative distribution of “pure” draw downs in the Dow
Jones index since 1900 until May 2000, i.e., no threshold
as for the Nasdaq Composite, gives a remarkably similar
result as that of the Nasdaq Composite, see Figure 4 and
caption, both with respect to the exponent as well as the

point were the data “breaks away” from the fit. If we again
extrapolate the fit to the largest events, we get that 0.12
draw downs above 23.5% should have occurred in the last
century whereas we in fact have observed 3.

This analysis confirms the conclusion from the previ-
ous analysis of the Dow Jones that draw downs larger than
≈ 15% are to be considered as outliers with high probabil-
ity. It is interesting that the same amplitude of ≈ 15% is
found for both markets considering the much larger daily
volatility of the Nasdaq Composite. This may result from
the fact that, as we have shown, very large draw downs
are more controlled by transient correlations than by the
amplitude of daily returns.

The presented statistical analysis of the Dow Jones
Average and the Nasdaq Composite suggests that large
crashes are special and that precursory patterns may ex-
ist decorating the speculative bubble preceding the crash.
As we have discussed in the preceding section, such pre-
cursory patterns do exist prior to these outliers and can
be quantified by equation (1). It is the subject of the next
section to quantify these precursory patterns for the Nas-
daq bubble starting in spring 1997 and ending April 2000
and to compare with the results previously obtained for
large crashes.

3 The current crash

With the low of 3227 on the 17 April, the Nasdaq Com-
posite lost over 37% of its all-time high of 5133 reached
on the 10’th of March this year. The Nasdaq Compos-
ite consists mainly of stock related to the so-called “New
Economy”, i.e., the Internet, software, computer hard-
ware, telecommunication ... A main characteristic of these
companies is that their price-earning-ratios (P/E’s), and
even more so their price-dividend-ratios, often come in
three digits1. Opposed to this, so-called “Old Economy”
companies, such as Ford, General Motors and Daimler-
Chrysler, have P/E ≈ 10. The difference between “Old
Economy” and “New Economy” stocks is thus the expec-
tation of future earnings as discussed in [20]: investors ex-
pect an enormous increase in for example the sale of In-
ternet and computer related products rather than in car
sales and are hence more willing to invest in Cisco rather
than in Ford notwithstanding the fact that the earning-
per-share of the former is much smaller than for the later.
For a similar price per share (approximately $60 for Cisco
and $55 for Ford), the earning per share is $0.37 for Cisco
compared to $6.0 for Ford (Cisco has a total market cap-
italisation of $395 billions (close of April, 14, 2000) com-
pared to $63 billions for Ford). In the standard funda-
mental valuation formula, in which the expected return
of a company is the sum of the dividend return and of
the growth rate, “New Economy” companies are supposed

1 VA LINUX to be discussed below actually has a negative
Earning/Share of −1.68. Yet they are currently traded around
$40 per share which is close to the price of Ford in early March
2000.
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to compensate for their lack of present earnings by a fan-
tastic potential growth. In essence, this means that the
bull market observed in the Nasdaq the last three years
until recently is fueled by expectations of increasing future
earnings rather than economic fundamentals: the price-to-
dividend ratio for a company such as Lucent Technologies
(LU) with a capitalization of over $300 billions prior to
its crash on the 5 January 2000 is over 900 which means
that you get a higher return on your checking account(!)
unless the price of the stock increases. Opposed to this, an
“Old Economy” company such as DaimlerChrysler gives a
return which is more than thirty times higher. Neverthe-
less, the shares of Lucent Technologies rose by more than
40% during 1999 whereas the share of DaimlerChrysler
declined by more than 40% in the same period. Truly sur-
realistic is the fact that the recent crashes of IBM, LU and
Procter & Gamble (P&G) correspond to a loss equivalent
to many countries state budget! And this is usually at-
tributed to a “business-as-usual” corporate statement of
a slightly revised smaller-than-expected earnings!

These considerations makes it clear that it is the ex-
pectation of future earnings that motivates the average in-
vestor rather than present economic reality, thus creating
a speculative bubble. History provides many examples of
bubbles driven by unrealistic expectations of future earn-
ings followed by crashes [21]. The same basic ingredients
are found repeatedly: fueled by initially well-founded eco-
nomic fundamentals, investors develop a self-fulfilling en-
thusiasm by an imitative process or crowd behavior that
leads to the building of “castles in the air”, to paraphrase
Malkiel [22]. Furthermore, the causes of the crashes on the
US markets in 1929, 1987, 1998 and present belongs to the
same category, the difference being mainly in which sector
the bubble was created: in 1929, it was utilities; in 1987,
the bubble was supported by a general deregulation of the
market with many new private investors entering the mar-
ket with very high expectations with respect to the profit
they would make; in 1998, it was an enormous expectation
to the investment opportunities in Russia that collapsed;
as for the present, it is the extremely high expectations
to the Internet, telecommunication etc. that has fueled
the bubble. The IPO’s (initial public offerings) of many
Internet and software companies has been followed by a
mad frenzy where the price of the share has soared dur-
ing the first few hours of trading. An excellent example is
VA LINUX SYSTEMS whose $30 IPO price increased a
record 697 percent to close at $239.25 on its opening day 9
Dec. 1999, only to decline to $28.94 on the 14 April 2000.

In Figure 5, we see the logarithm of the Nasdaq Com-
posite fitted with equation (1). The data interval to fit
was identified using the same procedure as for the other
crashes: the first point is the lowest value of the index prior
to the onset of the bubble and the last point is that of the
all-time high of the index. There exists some subtelty with
respect to identifying the onset of the bubble, the end of
the bubble being objectively defined as the date where the
market reached is maximum. A bubble signifies an accel-
eration of the price. In the case of Nasdaq, it tripled from
1990 to 1997. However, the increase was a about factor 4

in the 3 years preceding the current crash thus defining an
“inflection point” in the index. In general, the identifica-
tion of such an “inflection point” is quite straightforward
on the most liquid markets whereas this is not the case
for the emergent markets. With respect to details of the
methodology of the fitting procedure, we refer the reader
to [4,23].

Three fits were obtained with similar parameter values
for the best and third best fit, whereas the second best fit
had a rather small value for z ≈ 0.08 and a rather high
value for ω ≈ 7.9 compared with previous results and is
not shown. The values obtained for the best and third
best fit are ω ≈ 7.0 and ω ≈ 6.5, z ≈ 0.27 and z ≈ 0.39,
tc ≈ 2000.34 and tc ≈ 2000.25, respectively. These results
pointed to a crash occuring between the 31 of March 2000
and 2 May 2000 and have now been confirmed by the
recent market event.

4 Prediction

An obvious question concerns the predictive power of
equation (1). In the present case, the last point used in
the fitted data interval was that of March 10, 2000. The
predicted time of the crash was as mentioned 2 May for
the best fit and 31 March for the third best fit. Except
for slight gains on 31 March and 5, 6 and 7 April, the
closing of the Nasdaq Composite has been in continuous
decline since the 24 March and lost over 25 % in the week
ending on Friday the 14 April. Consequently, the crash
occured approximately in between the predicted date of
the two fits. The corresponding dates for the 1929, 1987
and 1998 crashes on Wall Street and the 1987, 1994 and
1997 crashes on the Hong-Kong stock exchange as well as
the collapse of the US$ in 1985 are shown in Table 1 for
comparison.

Table 1. tc is the critical time predicted from the fit of the
financial time series to the equation (1). The other parameters
z, ω and λ of the fit are also shown. The fit is performed up
to the time tmax at which the market index achieved its high-
est maximum before the crash. tmin is the time of the lowest
point of the market after the maximum. The percentage drop
is calculated from the total loss from tmax to tmin.

crash tc tmax tmin % drop z ω λ
1929 (DJ) 30.22 29.65 29.87 47% 0.45 7.9 2.2
1985 (DM) 85.20 85.15 85.30 14% 0.28 6.0 2.8
1985 (CHF) 85.19 85.18 85.30 15% 0.36 5.2 3.4
1987 (S&P) 87.74 87.65 87.80 30% 0.33 7.4 2.3
1987 (H-K) 87.84 87.75 87.85 50% 0.29 5.6 3.1
1994 (H-K) 94.02 94.01 94.04 17% 0.12 6.3 2.7
1997 (H-K) 97.74 97.60 97.82 42% 0.34 7.5 2.3
1998 (S&P) 98.72 98.55 98.67 19.4% 0.60 6.4 2.7
1999 (IBM) 99.56 99.53 99.81 34% 0.24 5.2 3.4
2000 (P&G) 00.04 00.04 00.19 54% 0.35 6.6 2.6

2000 (Nasdaq) 00.34 00.22 00.29 37% 0.27 7.0 2.4
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Fig. 5. Best (r.m.s. ≈ 0.061) and third best (r.m.s. ≈ 0.063) fits with equation (1) to the natural logarithm of the Nasdaq
Composite. The parameter values of the fits are A ≈ 9.5, B ≈ −1.7, C ≈ 0.06, z ≈ 0.27, tc ≈ 2000.33, ω ≈ 7.0, φ ≈ −0.1 and
A ≈ 8.8, B ≈ −1.1, C ≈ 0.06, z ≈ 0.39, tc ≈ 2000.25, ω ≈ 6.5, φ ≈ −0.8, respectively.

We see that, in all 9 cases, the market crash started
at a time between the date of the last point and the
predicted tc. And with the exception of the October 1929
crash and using the third best fit of the present crash (this
fit had ω/2π ≈ 1), in all cases the market ended its decline
less than approximately one month after the predicted tc.
These results indeed suggest that predictions of crashes
with equation (1) is indeed possible.

Furthermore, the crashes of the shares of IBM, LU
and P&G, i.e., three of the largest US companies, may
be taken as precursors of a pending crash signifying how
unstable the market actually was in the months preced-
ing the current crash. Quite remarkably, two of these three
company crashes were also preceded by a speculative bub-
ble with the same characteristics as previously seen on the
market as a whole, see Figures 7, 6 and Table 1.

Of course, the results presented here does not mean
that we have publicly predicted the April 2000 crash of
the Nasdaq Composite. This has neither been the pur-
pose. What the analysis presented above shows is that
equation (1) has predictive power. Furthermore, from
a purely scientific point of view, it is the observation
and the comparison between the observation and the
predictions of the model which carry meaning.

5 False alarms

Not all speculative bubbles end in a crash. Hence, the
question about false alarms enters naturally. We have

twice identified a log-periodic power law bubble signal-
ing a crash where the market in fact did not crash ac-
cording to the definition presented in Section 2. The first
attempt was in October 1997 where the market dropped
only 7% [24] and quickly recovered (see also [25]). The sec-
ond attempt was in October last year when the world mar-
kets were sent into turmoil by a speech by Alan Greenspan
and the Dow Jones for the first time since 8 April 1999
dipped below 10 000 on the 15 and 18 October 1999. How-
ever, the market did not crash and instead quickly re-
covered. These two examples of bubbles landing more or
less smoothly are completely consistent with the theory
of rational bubbles and crashes developed in [4]. This also
illustrates the difficulties involved in a crash-prediction
scheme using equation (1): according to the theory, the
critical time tc is not necessarily the time of the crash,
only its most probable time; in addition, there is a finite
probability that the bubble ends without crashing. We are
currently investigating how to extend the methodology in
order to increase the reliability of the model in terms of
predictions.

6 Conclusion

Here, we have provided yet an example of a speculative
bubble with power law acceleration and log-periodic os-
cillations ending in a crash/major correction, i.e., that of
the Nasdaq Composite starting in spring 1997 ending in
late March/early April 2000. The log-frequency of these
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oscillations is in remarkable agreement with what has been
obtained previously on a wide range of markets [4,6].

The present analysis of these market phases em-
phasizes a collective behavior of investors, leading to a
fundamental ripening of the markets towards an insta-
bility. This must be contrasted with the endeavor of
economists and analysts who search for contemporary
news to explain the events. For instance, the August 1998
crash was often attributed to a devaluation of the ruble
and to events on the Russian political scene. While we do
not underestimate the effect of “news”, we observe that
markets are constantly “bombarded” by news and it will
always be possible to attribute the crash to a specific one,
after the fact. In contrast, we view their reactions more
often than not as reflecting their underlying stability (or
instability). In the case of the August 1998 crash, the mar-
ket was ripe for a correction and the “news” made it oc-
cur. If nothing had occurred on the Russian scene, we
have proposed [4] that other news would have triggered
the event anyway, within a time scale of about a month,
which seems to be the relevant lifetime of a market in-
stability associated with the burst of a bubble. With re-
spect to the present Nasdaq crash, undoubtedly, analysts
will forge post-mortem stories linking it in part with the
effect of the crash of Microsoft Inc. resulting from the
breaking of negotiations during the week-end of April 1st
with the US federal government on the antitrust issue.
Again, we see the Nasdaq crash as the natural death of
a speculative bubble, anti-trust or not, the results pre-
sented here strongly suggest that the bubble would have
collapsed anyway.

However, according to our analysis (see the probabilis-
tic model of bubbles in [3–5]), the exact timing of its death
is not fully deterministic and allows for stochastic influ-
ences, but within the remarkably tight bound of about one
month.

We have also discussed the possibility of using the pro-
posed framework, specifically equation (1), in order to pre-
dict when the market will exhibit a crash/major correc-
tion. Our analysis not only points to a predictive potential
but also that false alarms are difficult to avoid due to the
underlying nature of speculative bubbles.

A fundamental remaining question concerns the use of
a reliable crash prediction scheme. Assume that a crash
prediction is issued stating that a crash will occur x weeks
from now. At least three different scenarios are possible:

– Nobody believes the prediction which was then fu-
tile and, assuming that the prediction was correct, the
market crashes2.

– Everybody believes the warning, which causes panic
and the market crashes as consequence. The prediction
hence seems self-fulfilling.

2 One may consider this as a victory for the “predictors”
but as we have experienced in relation to our quantitative pre-
diction of the change in regime of the Nikkei index [26], this
would only be considered by some critics just another “lucky
one” without any statistical significance (see [28] for an alter-
native Bayesian approach).

– Enough people believe that the prediction may be cor-
rect and the steam goes off the bubble. The prediction
hence disproves itself.

None of these scenarios are attractive. In the first
two, the crash is not avoided and in the last scenario the
prediction disproves itself and as a consequence the the-
ory looks unreliable. This seems to be the unescapable lot
of scientific investigations of systems with learning and
reflective abilities, in contrast with the usual inanimate
and unchanging physical laws of nature. Furthermore, this
touches the key-problem of scientific responsibility. Natu-
rally, scientists have a responsibility to publish their find-
ings. However, when it comes to the practical implemen-
tation of those findings in society, the question becomes
considerably more complex.

We thank D. Stauffer for stimulating comments on the
manuscript. D.S. also thanks B. Roehner for his comments.
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